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Abstract. Action anticipation involves predicting future actions having
observed the initial portion of a video. Typically, the observed video is
processed as a whole to obtain a video-level representation of the ongoing
activity in the video, which is then used for future prediction. We intro-
duce Anticipatr which performs long-term action anticipation leverag-
ing segment-level representations learned using individual segments from
different activities, in addition to a video-level representation. We pro-
pose a two-stage learning approach to train a novel transformer-based
model that uses these two types of representations to directly predict
a set of future action instances over any given anticipation duration.
Results on Breakfast, 50Salads, Epic-Kitchens-55, and EGTEA Gaze+
datasets demonstrate the effectiveness of our approach.
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1 Introduction

The ability to envision future events is a crucial component of human intelligence
which helps in decision making during our interactions with the environment.
We are naturally capable of anticipating future events when interacting with the
environment in a wide variety of scenarios. Similarly, anticipation capabilities
are essential to practical AI systems that operate in complex environments and
interact with other agents or humans (e.g., wearable devices [59], human-robot
interaction systems [31], autonomous vehicles [40,66]).

Existing anticipation methods have made considerable progress on the task
of near-term action anticipation [12,13,16,17,19,21,41,63] that involves predict-
ing the immediate next action that would occur over the course of a few seconds.
While near-term anticipation is a valuable step towards the goal of future predic-
tion in AI systems, going beyond short time-horizon prediction has applicability
in a broader range of tasks that involve long-term interactions with the environ-
ment. The ability to anticipate actions over long time-horizons is imperative for
applications such as efficient planning in robotic systems [11,18] and intelligent
augmented reality systems.

In this paper, we focus on long-term action anticipation. Figure 1 illustrates
the problem – having observed an initial portion of an untrimmed activity video,
we predict what actions would occur when in the future.
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Fig. 1. Long-Term Action Anticipation. Given the initial portion of an activity
video (0, . . . , To) and anticipation duration Ta, the task is to predict the actions that
would occur from time To +1 to To +Ta. Our proposed anticipation model receives the
observed video and the anticipation duration as inputs and directly predicts a set of
future action instances. Here, the action anticipation is long-term – both the observed
duration To and the anticipation duration Ta are in the order of minutes.

Long-term anticipation methods [5,15,18,28,55] predict future actions based
on the information in the observed video (i.e., an initial portion of an untrimmed
activity video) that partially depicts the activity in the video. Current ap-
proaches rely on encoding the observed video (input) as a whole to obtain video-
level representations to perform action anticipation.

We propose a novel approach that leverages segment-level and video-level
representations for the task of long-term action anticipation. Consider the ex-
ample in Figure 1. The video depicts the activity person making pasta spanning
several minutes. This activity has segments with actions such as slice onion, put
pesto, put courgette, add cheese. One of these segments such as put pesto tends
to co-occur with actions involving objects such as courgette, onion, or cheese
in a specific order. However, other videos with a different activity, say, person
making pizza, could potentially have a similar set and/or sequence of actions in
a different kitchen scenario. As such, while a specific sequence of actions (i.e.,
segments of a video) help denote an activity, an individual video segment (con-
taining a single action) alone contains valuable information for predicting the
future. Based on this intuition, we introduce an approach that leverages segment-
level representations in conjunction with video-level representations for the task
of long-term action anticipation. In so doing, our approach enables reasoning
beyond the limited context of the input video sequence.

In this work, we propose Anticipatr that consists of a two-stage learning
approach employed to train a transformer-based model for long-term anticipa-
tion (see Fig. 2 for an overview). In the first stage, we train a segment encoder to
learn segment-level representations. As we focus on action anticipation, we de-
sign this training task based on co-occurrences of actions. Specifically, we train
the segment encoder to learn which future actions are likely to occur after a
given segment? Intuitively, consider a video segment showing a pizza pan being
moved towards a microwave. Irrespective of the ongoing activity in the video
that contains this segment, it is easy to anticipate that certain actions such as
open microwave, put pizza and close microwave are more likely to follow than
the actions wash spoon or close tap.
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In the second stage, we utilize both the segment-level and video-level rep-
resentations for long-term action anticipation. We design a transformer-based
model that contains two encoders: (1) the segment encoder to derive representa-
tions corresponding to segments in the observed video, and (2) a video encoder
to derive the video-level representations of the observed video. These encoded
representations are then fed into an anticipation decoder that predicts actions
that would occur in the future. Our model is designed to directly predict a set
of future action instances, wherein, each element of the set (i.e., an action in-
stance) contains the start and end timestamps of the instance along with the
action label. Using direct set prediction, our approach predicts the actions at all
the timestamps over a given anticipation duration in a single forward pass.

To summarize, this paper makes the following contributions: (1) a novel learn-
ing approach for long-term action anticipation that leverages segment-level rep-
resentations and video-level representations of the observed video, (2) a novel
transformer-based model that receives a video and anticipation duration as in-
puts to predict future actions over the specified anticipation duration, (3) a direct
set prediction formulation that enables single-pass prediction of actions, and (4)
state-of-the-art performance on a diverse set of anticipation benchmarks: Break-
fast [32], 50Salads [60], Epic-Kitchens-55 [12], and EGTEA Gaze+ [34]. Code is
available at https://github.com/Nmegha2601/anticipatr

Overall, our work highlights the benefits of learning representations that
capture different aspects of a video, and particularly demonstrates the value of
such representations for action anticipation.

2 Related Work

Action Anticipation. Action anticipation is generally described as the pre-
diction of actions before they occur. Prior research efforts have used various
formulations of this problem depending on three variables: (1) anticipation for-
mat, i.e., representation format of predicted actions, (2) anticipation duration,
i.e., duration over which actions are anticipated, and (3) model architectures.

Current approaches span a wide variety of anticipation formats involving
different representations of prediction outcomes. They range from pixel-level
representations such as frames or segmentations [8, 36, 38, 43] and human tra-
jectories [6, 13, 23, 27, 30, 42] to label-level representations such as action la-
bels [15, 16, 17, 19, 28, 33, 50, 52, 53, 55, 57, 63, 68, 69] or temporal occurrences of
actions [5, 18, 35, 41, 44, 61] through to semantic representations such as affor-
dances [31] and language descriptions of sub-activities [56]. We focus on label-
level anticipation format and use ‘action anticipation’ to refer to this task.

Existing anticipation tasks can be grouped into two categories based on the
anticipation duration: (1) near-term action anticipation, and (2) long-term action
anticipation. In this paper, we focus on long-term action anticipation.

Near-term anticipation involves predicting label for the immediate next
action that would occur in the range of a few seconds having observed a short
video segment of duration of a few seconds. Prior work propose a variety of

https://github.com/Nmegha2601/anticipatr
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temporal modeling techniques to encode the observed segment such as regression
networks [63], reinforced encoder-decoder network [19], TCNs [67], temporal
segment network [12], LSTMs [16,17,49], VAEs [44,65] and transformers [21].

Long-term anticipation involves predicting action labels over long time-
horizons in the range of several minutes having observed an initial portion of a
video (observed duration of a few minutes). A popular formulation of this task in-
volves prediction of a sequence of action labels having observed an initial portion
of the video. Prior approaches encode the observed video as a whole to obtain a
video-level representation. Using these representations, these approaches either
predict actions recursively over individual future time instants or use time as a
conditional parameter to predict action label for the given single time instant.
The recursive methods [5, 15, 18, 50, 55] accumulate prediction error over time
resulting in inaccurate anticipation outcomes for scenarios with long anticipa-
tion duration. The time-conditioned method [28] employs skip-connections based
temporal models and aims to avoid error accumulation by directly predicting an
action label for a specified future time instant in a single forward pass. However,
this approach still requires multiple forward passes during inference as the task
involves predicting actions at all future time instants over a given anticipation
duration. Additionally, sparse skip connections used in [28] do not fully utilize
the relations among the actions at intermediate future time instants while pre-
dicting action at a given future time instant. In contrast to these approaches
based on video-level representations, our approach leverages segment-level rep-
resentations (learned using individual segments across different activities) in
conjunction with video-level representations. Both these representations are uti-
lized to directly predict action instances corresponding to actions at all the time
instants over a given anticipation duration in a single forward pass.

An alternate formulation of long-term anticipation proposed in [46] focuses
on predicting a set of future action labels without inferring when they would oc-
cur. [46] extracts a graph representation of the video based on frame-level visual
affordances and uses graph convolutional network to encode the graph repre-
sentation to predict a set of action labels. In contrast, our approach leverages
both the segment-level and video-level representations of the input video and
a transformer-based model to predict action instances - both action labels and
their corresponding timestamps.

Other methods design approaches to model uncertainty in predicting actions
over long time horizons [4, 48,50] and self-supervised learning [51].

Early action detection. The task of early action detection [24, 39, 54, 58] in-
volves recognizing an ongoing action in a video as early as possible given an
initial portion of the video. Though the early action detection task is different
from action anticipation (anticipation involves prediction of actions before they
begin), the two tasks share the inspiration of future prediction.

Transformers in computer vision. The transformer architecture [62], origi-
nally proposed for machine translation task, has achieved state-of-the-art perfor-
mance for many NLP tasks. In recent years, there has been a flurry of work on
transformer architectures designed for high-level reasoning tasks on images and
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videos. Examples include object detection [9], image classification [14], spatio-
temporal localization in videos [20], video instance segmentation [64], action
recognition [7, 70], action detection [47], multi-object tracking [45], next ac-
tion anticipation [21], human-object interaction detection [29, 71]. DETR [9]
is a transformer model for object detection, wherein, the task is formulated as
a set prediction problem. This work has since inspired transformer designs for
similar vision tasks – video instance segmentation [64] and human-object inter-
action detection [71]. Inspired by these works, we propose a novel transformer
architecture that uses two encoder to encode different representations derived
from the input video and a decoder to predict the set of future action instances
in a single pass. Our proposed decoder also receives anticipation duration as an
input parameter to control the duration over which actions are predicted.

3 Action Anticipation with Anticipatr

In this section, we first describe our formulation of long-term action anticipation
and then describe our approach.
Problem Formulation. Let vo be an observed video containing To frames.
Our goal is to predict the actions that occur from time To+1 to To+Ta where Ta

is the anticipation duration, i.e., the duration over which actions are predicted.
Specifically, we predict a set A = {ai = (ci, tis, t

i
e)} containing future action in-

stances. The i-th element denotes an action instance ai depicting action category
ci occurring from time tis to tie where To < tis < tie ≤ To+Ta. Here, ci ∈ C where
C is the set of action classes in the dataset.

Intuitively, for action anticipation, the observed video as a whole helps pro-
vide a broad, video-level representation of the ongoing activity depicted in the
video. However, the observed video is composed of several segments that indi-
vidually also contain valuable information about future actions and provide an
opportunity to capture the video with segment-level representations. Using this
intuition, in this paper, we propose Anticipatr that leverages these two types
of representations of the observed video for the task of long-term anticipation.

Anticipatr employs a two-stage learning approach to train a transformer-
based model that takes an observed video as input and produces a set of future
action instances as output. See Fig. 2 for an overview. In the first stage, we train
a segment encoder that receives a segment (sequence of frames from a video) as
input and predicts the set of action labels that would occur at any time in the
future after the occurrence of the segment in the video. We refer to this stage
as segment-level training (described in Sec. 3.1). As the segment encoder only
operates over individual segments, it is unaware of the broader context of the
activity induced by a specific sequence of segments in the observed video.

In the second stage, we train a video encoder and an anticipation decoder to
be used along with the segment encoder for long-term action anticipation. The
video encoder encodes the observed video to a video-level representation. The
segment encoder (trained in the first stage) is fed with a sequence of segments
from the observed video as input to obtain a segment-level representation of
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Fig. 2. Learning Approach. Anticipatr uses a two-stage learning approach. In the
first stage, we perform segment-level training (refer to Sec 3.1). Given a segment as
input, we train a segment encoder to predict the set of action labels that would occur
at any time after the occurrence of the segment in the activity video. In the second
stage, we perform long-term action anticipation (refer to Sec 3.2). We use video encoder
to obtain video-level representation and segment encoder (trained in the first stage)
is used to obtain segment-level representation. The anticipation decoder receives these
two representations of the observed video to directly predict a set of action instances
that would occur in the future over a given anticipation duration.

the video. The anticipation decoder receives the two representations along with
the anticipation duration to predict a set of future action instances over the
given anticipation duration in a single pass. The video encoder and anticipa-
tion decoder are trained using classification losses on the action labels and two
temporal losses (L1 loss and temporal IoU loss) on the timestamps while the
segment encoder is kept unchanged. We refer to this second stage of training as
action anticipation (see Sec. 3.2).

3.1 Stage 1: Segment-level Training

In this stage, the segment encoder is trained on a segment-level prediction task
to learn representations for individual segments. See Fig. 3 (left) for an overview.
Segment Encoder. We design the segment encoder network Es as a sequence
of ℓs transformer blocks containing a multi-head self-attention module followed
by layernorm and a feed forward network [62]. This network is trained on the
task of segment-level action anticipation.
Training. During training, the segment encoder receives a segment (sequence
of frames from a video) as input and predicts the set of action labels that would
occur at any time in the future (starting from the temporal boundary, i.e., end
of the segment until the end of that video) without inferring when they would
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Fig. 3. Model Architecture. Our model comprises three networks: segment encoder,
video encoder and anticipation decoder and is trained for long-term action anticipation
in two stages. (left) Segment-level training (Sec. 3.1): The segment encoder receives a
segment as input and predicts a set of action labels that would occur at any time in the
future (after the occurrence of segment in the video). (right) Action Anticipation (Sec.
3.2): The video encoder encodes the observed video to a video-level representation.
Concurrently, the video is divided into a sequence of segments and each segment is fed
into the segment encoder (trained in first stage)The anticipation decoder receives the
two representations along with an anticipation duration as inputs to directly predict
a set of future action instances over the given anticipation duration. [MH Attention:
Multi-head Attention, FFN: Feed Forward Network.]

occur. Depending on the segment, there could be multiple actions occurring
between the end of segment and end of video. Thus, we formulate this training
task as a multi-class multi-label classification.

The training data for the segment encoder is derived from the training set
in the original video dataset containing videos with action annotations. These
input segments are obtained using the action boundaries provided in the training
set. We do not require any additional annotations. Formally, given a video v

containing T frames, a segment v
(t′,t′′)
s , spanning time indices t′ to t′′ where

0 ≤ t′ < t′′ < T , is taken as input. For this segment, the target is a binary
vector cs (dimension |C|) corresponding to the action labels that occur after the
temporal boundary of the segment until the end of the video ([vt′′+1, . . . ,vT ]).

The segment encoder Es receives the segment v
(t′,t′′)
s along with positional

encodings p
(t′,t′′)
s (details in supplementary). The output of the encoder is an

embedding h = [h1, . . . ,ht′′−t′+1] of dimension (t′′ − t′ + 1) × ds where ds is
the channel dimension. The output embeddings are then averaged along time
dimension and fed into a linear layer F followed by a sigmoid activation σ to
obtain future action probabilities ĉs of dimension |C|, expressed as:

h = Es

(
v(t′,t′′)
s ,p(t′,t′′)

s

)
ĉs = σ

F

(
1

t′′ − t′ + 1

t′′−t′+1∑
i=1

hi

) .
(1)
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Here, ĉs is the output of a multi-label classifier where each element cjs of ĉs de-
notes probability of corresponding action category j ∈ C. This network is trained
using binary cross entropy loss between the prediction vector ĉs and target vec-
tor cs. Once trained, the linear layer F is discarded and the segment encoder Es

is used to obtain segment-level representations for the action anticipation stage.

3.2 Stage 2: Action Anticipation

In the second stage of our approach, we use an encoder-decoder model that
contains two encoders: (i) the segment encoder from the first stage, and (ii) a
video encoder that encodes the observed video as a whole. The outputs of these
two encoders along with an anticipation duration are fed into an anticipation
decoder which uses the representations from the two encoders to predict a set of
future action instances over the given anticipation duration. See Fig. 3 (right).
Video Encoder. The video encoder receives an observed video containing To

frames. We denote the input as vo = [v1, . . . ,vTo ]. We design the encoder net-
work Ev as a sequence of ℓv transformer blocks [62] containing a multi-head
self-attention module followed by layernorm and feed forward network. The en-
coder receives the features corresponding to the observed video vo as input. As
the self-attention module is permutation-invariant, we provide additional infor-
mation about the sequence in the form of sinusoidal positional encodings [62]
po = [p1, . . . ,pTo ] (see supplementary for additional explanation). Here, each
element in the positional encoding sequence is added to the corresponding el-
ement in the video features and then fed into the encoder block. The encoder
models temporal relationships in the observed video and transforms the input
sequence to a contextual representation hv = [h1

v, . . . ,h
To
v ], expressed as:

hv = Ev(vo,po). (2)

Encoding Video Segments. Concurrent to the video encoder, the input video
is divided into a sequence of segments using temporal sliding windows. Specif-
ically, a temporal window of size k starting from frame index i obtains a seg-
ment [vi, . . . ,vi+k−1], which is fed to the segment encoder to obtain the outputs
hi
s, . . . ,h

i+k−1
s . The starting index i slides across time with i ∈ {1, k + 1, 2k +

1, . . . , (To − k + 1)} generating the temporal windows, where the window size k
is a hyperparameter. The outputs of the segment encoder for all temporal win-
dows are concatenated to obtain hs = [h1

s, . . . ,h
To
s ]. During implementation, the

representations can still be obtained in one forward pass of the segment encoder
by stacking segments along the batch dimension of the input. This segment-level
representation of the video is complementary to the video-level representation
that encodes the ongoing activity in the video.
Anticipation Decoder. Given the video-level and the segment-level represen-
tations, the decoder aims to predict a set of future action instances over a given
anticipation duration. The predicted set contains action instances of the form
(label, start time, end time). The anticipation decoder receives the following in-
puts: (i) anticipation queries q0, (ii) anticipation duration Ta over which actions
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are to be predicted, (iii) encoded representation hv from video encoder Ev, and
(iv) encoded representation hs from segment encoder Es.

The anticipation queries containNa elements, i.e., q0 = [q1
0, . . . ,q

Na
0 ], wherein

each query is a learnable positional encoding (more details in supplementary).
We consider Na as a hyperparameter that is constant for a dataset and is suffi-
ciently larger than the maximum number of action instances to be anticipated
per video in the overall dataset. Each query qi

0 is then fed into a linear layer
(weights shared for all values of i) along with the anticipation duration Ta to
obtain time-conditioned anticipation queries qi

a for i = 1, . . . , Na. This time con-
ditioning enables the anticipation decoder to predict actions over any specified
anticipation duration.

The decoder network D consists of ℓd blocks, wherein, each block contains
a cascade of attention layers. The first attention layer is the multi-head self-
attention block which models relations among the anticipation queries. The sec-
ond attention layer is a multi-head encoder-decoder attention layer that maps
the queries and the segment-level representations from the segment encoder.
And, the third attention layer is another multi-head encoder-decoder attention
layer that maps the output of previous layer to the video-level representation
corresponding to the input. This third attention layer is followed by a feedfor-
ward network. The output of the decoder y = [y1, . . . ,yNa ] serves as a latent
representation of the action instances in the videos, expressed as:

y = D(qa,hv,hs) (3)

The decoder output is used to predict the set of action instances Â = {âi =
(ĉi, t̂is, t̂

i
e)}

Na
i=1. Each element in decoder output yi is fed into a linear layer fol-

lowed by softmax to obtain prediction probabilities p̂i(c) where c = 1, . . . , |C|+1
and ĉi is the class corresponding to maximum probability. The number of queries
Na is larger than the maximum number of action instances per video in the
dataset. Thus, we introduce an additional class label ∅ indicating no action. yi

is also fed into another feedforward network with ReLU to obtain corresponding
start timestamps t̂is and end timestamps t̂ie.
Training. To compute the loss, we first align the predictions with the groundtruth
set of action instances. This alignment is necessary as there is no fixed prior cor-
respondence between the predicted and the groundtruth set of action instances.
Here, the predicted set for any video contains Na action instances, but the size of
groundtruth setA varies based on the video and is smaller than the predicted set.
Thus, we first pad the groundtruth set to make it the same size as the predicted
set by adding Na−|A| elements with label ∅ indicating no action. Then, we use
a pair-wise greedy correspondence algorithm to align the groundtruth and pre-
dicted sets. Starting with the groundtruth instance having the longest duration,
we match each groundtruth instance with the unmatched predicted instance that
has the maximum temporal overlap with the groundtruth instance. This results
in a one-to-one mapping for loss computation (more details in supplementary).

Consider the output of the set correspondence module as γ denoting the per-
mutation of the predicted set of instances, i.e., the groundtruth action instance
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ai is matched to predicted instance âγ(i) for i = 1, . . . , Na. Given this align-
ment, we compute loss L over all the matched pairs as a weighted combination
of cross-entropy loss for classification, and two temporal losses: L1 loss and IoU
loss (Liou) for prediction of segment timestamps, defined as:

L =

Na∑
i=1

[
− log(p̂γ(i)(ci)) + 1{ci ̸=∅}λL1||si − ŝγ(i)||1

+ 1{ci ̸=∅}λiouLiou(s
i, ŝγ(i))

]
,

(4)

where λiou, λL1 ∈ R+ are hyperparameters, si = [tis, t
i
e], ŝ

γ(i) = [t̂
γ(i)
s , t̂

γ(i)
e ] and

p̂γ(i)(ci) is the probability of the groundtruth class ci for prediction γ(i). The
video encoder and anticipation decoder are jointly trained to minimize this loss.
We do not fine-tune the segment encoder in this stage.
Inference. During inference, the video encoder takes the observed video as input
and the segment encoder takes the chunked video (i.e., non-overlapping segments
of fixed length) as input. The inputs to the decoder are: (i) anticipation queries
q0 = 1, . . . , Na (a constant, regardless of input), (ii) anticipation duration Ta

(varies based on the input video and the anticipation requirement), (iii) output
representation from the video encoder, and (iv) output representation from the
segment encoder. The decoder predicts a set of action instances. Thus, our ap-
proach allows us to build a model that can anticipate actions over any future
duration in a single pass by simply controlling the input Ta to the decoder as
shown by results in Table 1.

In summary, Anticipatr uses a two-stage learning approach to train a
transformer-based model (consisting of two encoders and one decoder) to pre-
dict a set of future action instances over any given anticipation duration. Our
approach aims to perform action anticipation with segment-level representations
learned using individual video segments in conjunction with video-level repre-
sentations learned by encoding input video as a whole. Our model anticipates
actions at all time instants over a given anticipation duration in a single forward
pass by directly predicting a set of future action instances.

4 Experiments

We conducted extensive experiments and analysis to demonstrate the effective-
ness of our proposed approach.
Datasets. We evaluate on four established benchmarks for this task. These
datasets of untrimmed videos vary in scale, diversity of labels and video duration.

Breakfast [32] contains 1,712 videos each depicting one of 10 breakfast ac-
tivities and annotated with action instances spanning 48 different action classes.
On average, a video contains 6 action instances and has a duration of 2.3 minutes.
For evaluation, we report the average across 4 splits from the original dataset.

50Salads [60] contains 50 videos, each showing a person preparing a salad.
On average, there are 20 action instances per video spanning 17 action classes
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Table 1. Results (Breakfast and 50Salads). We report the mean over classes
accuracy for different observation/anticipation durations. Higher values indicate better
performance. Note that “Sener et al. [55] (features+labels)” use action labels from a
segmentation algorithm as additional input. Baseline results are from respective papers.

Observation (βo) → 20% 30%

Anticipation (βa) → 10% 20% 30% 50% 10% 20% 30% 50%

B
re

a
k
fa
st

RNN [5] 18.1 17.2 15.9 15.8 21.6 20.0 19.7 19.2
CNN [5] 17.9 16.3 15.3 14.5 22.4 20.12 19.7 18.7
RNN [5] + TCN 5.9 5.6 5.5 5.1 8.9 8.9 7.6 7.7
CNN [5] + TCN 9.8 9.2 9.1 8.9 17.6 17.1 16.1 14.4
Ke et al. [28] 18.4 17.2 16.4 15.8 22.7 20.4 19.6 19.7
Farha et al. [15] 25.9 23.4 22.4 21.5 29.7 27.4 25.6 25.2
Qi et al. [51] 25.6 21.0 18.5 16.0 27.3 23.6 20.8 17.3
Sener et al. [55] (features) 24.2 21.1 20.0 18.1 30.4 26.3 23.8 21.2
Sener et al. [55] (features+labels) 37.4 31.8 30.1 27.1 39.8 34.2 31.9 27.9
Anticipatr (Ours) 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4

5
0
S
a
la
d
s

RNN [5] 30.1 25.4 18.7 13.5 30.8 17.2 14.8 9.8
CNN [5] 21.2 19.0 15.9 9.8 29.1 20.1 17.5 10.9
RNN [5] + TCN 32.3 25.5 19.1 14.1 26.1 17.7 16.3 12.9
CNN [5] + TCN 16.0 14.7 12.1 9.9 19.2 14.7 13.2 11.2
Ke et al. [28] 32.5 27.6 21.3 15.9 35.1 27.1 22.1 15.6
Farha et al. [15] 34.8 28.4 21.8 15.2 34.4 23.7 18.9 15.9
Sener et al. [55](features) 25.5 19.9 18.2 15.1 30.6 22.5 19.1 11.2
Sener et al. [55](features+labels) 34.7 26.3 23.7 15.7 34.5 26.1 22.7 17.1
Qi et al. [51] 37.9 28.8 21.3 11.1 37.5 24.1 17.1 09.1
Piergiovanni et al. [50] 40.4 33.7 25.4 20.9 40.7 40.1 26.4 19.2
Anticipatr (Ours) 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6

and duration is 6.4 minutes. Following the original dataset, we report the average
across 5-fold cross-validation in our evaluation.

EGTEA Gaze+ (EGTEA+) [34] contains egocentric videos of 32 subjects
following 7 recipes in a single kitchen. Each video depicts the preparation of a
single dish. Each video is annotated with instances depicting interactions (e.g.,
open drawer), spanning 53 objects and 19 actions.

EPIC-Kitchens-55 (EK-55) [12] contains videos of daily kitchen activities.
It is annotated for interactions spanning 352 objects and 125 actions. It is larger
than the aforementioned datasets, and contains unscripted activities.

We represent the input videos by feature representations used in the bench-
marks (see supplementary for details).

Evaluation. To measure the performance of our model, we adopt the evaluation
protocol followed by state-of-the-art methods for these benchmark datasets.

For Breakfast and 50Salads, we report the mean over classes accuracy aver-
aged over all future timestamps in the specified anticipation duration, i.e., dense
prediction evaluation as defined in [5,15,28]. We use βo% of a full video as ob-
servation duration and predict the actions corresponding to following βa% of the
remaining video. As per the benchmarks, we sweep the values of βo ∈ {20, 30}
and βa ∈ {10, 20, 30, 50} denoting different observation and anticipation dura-
tions respectively. Note that a single trained model is used for predicting at all
these values of βo and βa by just varying the anticipation duration input to the
decoder. Since the metric is computed over a dense anticipation timeline, we
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Table 2. Results (EK-55 and EGTEA+). We report mAP values for all classes,
frequent classes (> 100 action instances) and rare class (< 10 action instances).
Following [46], we report the mAP values averaged over different observation durations.
Higher values implies better performance. Baseline results are from respective papers.

Method EK-55 EGTEA+

All Freq Rare All Freq Rare

RNN 32.6 52.3 23.3 70.4 76.6 54.3
I3D [10] 32.7 53.3 23.0 72.1 79.3 53.3
ActionVLAD [22] 29.8 53.5 18.6 73.3 79.0 58.6
Timeception [25] 35.6 55.9 26.1 74.1 79.7 59.7
VideoGraph [26] 22.5 49.4 14.0 67.7 77.1 47.2
EGO-TOPO [46] 38.0 56.9 29.2 73.5 80.7 54.7
Anticipatr(Ours) 39.1 58.1 29.1 76.8 83.3 55.1

first convert our model predictions (set of action instances) into a timeline and
then compute mean over classes accuracy (details in supplementary).

For EK-55 and EGTEA+, we compute a multi-label classification metric
(mAP) over the target action classes as defined in [46]. αo% of each untrimmed
video is given as input to predict all action classes in the future (100− αo)% of
the video, i.e., until the end of the video. We sweep values of αo ∈ {25, 50, 75}
representing different observation durations. Since the metric is computed only
over the future action classes, we take the union of the class labels of predicted
action instances to compute mAP.

Comparison with state-of-the-art. Table 1 shows the results for Breakfast
and 50Salads datasets in the ‘no groundtruth labels’ setting [28,55]. The results
show that our approach outperforms existing methods by a considerable margin
for different observation/anticipation durations. For these benchmarks, the most
similar approach to ours is Sener et al. [55] where they propose self-attention
methods for temporal aggregation for long-term video modeling. In the setting
similar to ours where they use only visual features as input, our approach out-
performs [55] with up to 13% improvement. Moreover, when they also use action
labels from a segmentation algorithm as input, our approach is still competitive
despite not using such additional inputs. In addition, the benefit of our approach
is more apparent when the anticipation duration is longer.

Table 2 shows results on the long-term action anticipation benchmarks for
EK-55 and EGTEA+ datasets, as defined by [46]. The results show that our
model achieves competitive results with the state-of-the-art method [46]. While
this benchmark only considers prediction of future action labels, our results
demonstrate that the segment prediction in our model acts as a beneficial aux-
iliary task for label prediction.

Impact of Segment-level Training. Our two-stage learning approach sepa-
rately learns video-level representations and segment-level representations. To
analyze the impact of such two-stage training, we design following experiments.

(i) Fine-tuned Segment Encoder. In this experiment, we also fine-tune
the segment encoder while training video encoder and decoder during the an-
ticipation stage (Sec 3.2). The results in Fig. 4 (‘Fine-tuned SE’) indicate that
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Fig. 4. Analysis. Quantitative evaluation of the anticipation performance of ablated
versions of Anticipatr. [SE: segment encoder; VE: video encoder].

fine-tuning the segment encoder hurts the anticipation performance. We be-
lieve fine-tuning the segment encoder with anticipation loss (Eq. 4) perturbs the
segment-level representation learned during first stage of training.

(ii) No Segment-level Training. In this experiment, we do not train the
segment encoder network in a separate stage. Instead, we train all three net-
works (i.e., segment encoder, video encoder and anticipation decoder) jointly
for the task of long-term action anticipation using the anticipation loss function
(Eq. 4). Here, the segment encoder receives videos chunked into short segments
(same as the proposed two-stage training). However, it is directly tasked with
solving a more difficult problem of simultaneously encoding segment-level rep-
resentation and inferring its usage for long-term anticipation. The results for all
datasets presented in Fig. 4 (‘No Segment-level Training’) illustrate that elim-
inating training of the segment encoder worsens the anticipation performance.
This shows the value of learning the segment-level representations independently
without being influenced by the overall activity in the input video.

In summary, these experiments demonstrate the importance of the two-stage
learning approach and suggest that the two representations should be learned
separately to serve their individual purposes during anticipation.
Impact of Segment Encoder. To evaluate the impact of learning segment-
level representation, we conducted experiments without the segment encoder
network. This ablated version only contains the video encoder and the anticipa-
tion decoder and is trained in a single-stage using the anticipation loss (Eq. 4).
The results in Fig. 4 (‘No SE’) show that removing the segment-level repre-
sentations considerably hurts the anticipation performance. This performance
degradation is worse than just removing the segment-level training stage (‘No
segment-level training’ in Fig. 4). Thus, this experiment validates the benefit of
the segment-level stream of information for action anticipation.
Impact of Set-based Output Representation. In our approach, we model
the anticipation output as a set of action instances. We empirically validate
this design by comparing with an alternative approach where the output is a
sequence of action labels corresponding to the individual future time instants. We
implement this by changing the anticipation queries (decoder input) during the
anticipation stage – we provide positional encodings corresponding to each time
instant over anticipation duration and directly predict the labels corresponding
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Fig. 5. Visualizations from Breakfast (left) and 50salads (right) where 20% of the
video is observed and actions are anticipated over 50% of the remaining video.

to these time instants. While the prediction for all time instants still happens in a
single pass, the decoder is required to transform a large number of anticipation
queries. The results in Fig. 4 (‘No Set Output’) show poor performance that
worsen further as anticipation duration increases. This is largely because the
number of queries is too high for the decoder for effective modeling.
Fusion of Encoder Outputs. To combine the representation from segment
encoder and video encoder, our model uses two encoder-decoder attention layers
in the decoder blocks. We tested an alternative approach wherein we fused the
representations using a simple addition along temporal dimension before feed-
ing into the decoder. Here, we modify the decoder blocks to contain a single
encoder-decoder attention layer. The results in Fig. 4 (‘Adding SE & VE be-
fore decoder’) indicate that this fusion approach leads to a slight decrease in
anticipation performance. We believe adding the representations before decoder
forces the computation of encoder-decoder attention weights by considering both
information streams at once. In contrast, our Anticipatr approach of comput-
ing attention one-by-one enables it to first filter out the relevant information
from segment-level representations learned across different activities and then
contextualize them into the specific context of the input video.
Visualizations. The examples in Fig. 5 shows that our model effectively an-
ticipates future actions. Please refer to supplementary material for additional
visualizations and analysis of failure cases.

5 Conclusion

We introduced a novel approach for long-term action anticipation to leverage
segment-level representations learned from individual segments across different
activities in conjunction with a video-level representation that encodes the ob-
served video as a whole. We proposed a novel two-stage learning approach to
train a transformer-based model that receives a video and an anticipation dura-
tion as inputs and predicts a set of future action instances over the given antici-
pation duration. Results showed that our approach achieves state-of-the-art per-
formance on long-term action anticipation benchmarks for Breakfast, 50Salads,
Epic-Kitchens-55, and EGTEA Gaze+ datasets. Overall, our work highlights
the benefits of learning representations that capture information across different
activities for action anticipation.
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A Appendix

In this document, we provide additional quantitative and qualitative analyses,
and additional details of the implementation of our approach. Specifically, this
document contains the following items.

– Sec. A.1: Technical details of the implementation and evaluation of our pro-
posed approach
• Sec. A.1.1: Architecture details (network architectures and loss function)
• Sec. A.1.2: Implementation details (input representations and hyperpa-
rameters)

• Sec. A.1.3: Evaluation details
– Sec. A.2: Additional ablation analysis
– Sec. A.3: Additional visualizations and qualitative analysis
– Sec. A.4 Additional discussion

A.1 Technical Details

In this section, we provide additional details for implementation of our proposed
approach Anticipatr to supplement Sec. 3 in the main paper.

A.1.1 Architecture Details
We propose Anticipatr that uses a two-stage learning approach to train a
transformer-based model for the task of long-term action anticipation. The model
comprises three networks: segment encoder, video encoder and anticipation de-
coder. Fig. F1 shows the architecture of the three networks.

In the first stage, we train a segment encoder that receives a segment (se-
quence of frames from a video) as input and predicts the set of action labels that
would occur at any future time instant after the occurrence of the segment in
the video.

In the second stage, we train a video encoder and an anticipation decoder to
be used along with the segment encoder for long-term action anticipation. The
video encoder encodes the observed video to a video-level representation. The
segment encoder (trained in the first stage) is fed with a sequence of segments
from the observed video as input to obtain a segment-level representation of
the video. The anticipation decoder receives the two representations along with
the anticipation duration to predict a set of future action instances over the
given anticipation duration in a single pass. The video encoder and anticipa-
tion decoder are trained using classification losses on the action labels and two
temporal losses (L1 loss and temporal IoU loss) on the timestamps while the
segment encoder is kept unchanged.

Positional Encoding for Segment Encoder. The input to the segment en-
coder is a video segment. We represent the segment as a sequence of features.
As the encoder is permutation-invariant, we provide temporal information in
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Fig. F1. Detailed Architecture. Architecture overview of (a) Segment encoder, (b)
Video encoder, and (c) Anticipation Decoder. Refer to Sec. A.1.1 for details. ‘Q’,‘K’,‘V’
are query, key and value to the self-attention layer as described in [62].
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the segment using the sinusoidal positional encodings (c.f. Vaswani et al. [62])
based on timestamps corresponding to the features of input segment. Specifi-
cally, for each input feature of each embedding we independently use sine and
cosine functions with different frequencies. We then concatenate them along the
channel dimension to get the final positional encoding. In our implementation,
the embedding size is same as that of the segment feature so that they can be
combined by simple addition of the positional encodings and segment features.

Positional Encoding for Video Encoder. The input to the video encoder
is a video. We represent the video as a sequence of features. As the transformer
encoder is permutation-invariant, we provide temporal information in the input
video using the sinusoidal positional encodings (c.f. Vaswani et al. [62]) based
on timestamps corresponding to the features of input video. Specifically, for
each input feature of each embedding we independently use sine and cosine
functions with different frequencies. We then concatenate them along the channel
dimension to to get the final positional encoding. In our implementation, the
embedding size is same as that of the video feature so that they can be combined
by simple addition of the positional encodings and video features.

Anticipation Queries (Anticipation Decoder). The anticipation queries
are learnable positional encoding designed as a learnable embedding layer. The
positional encoding layer receives integer index i as input corresponding to i−th
anticipation query and provides an embedding qi

0 where i ∈ {1, . . . , Na}. In our
implementation, we use torch.nn.Embedding in Pytorch to implement this. The
weights of the layer are learnable during training, thus, the positional encoding
layer is also learnable. The initialization of this layer requires maximum possible
value of the index, i.e., Na in our case.

The anticipation queries q0 are then combined with anticipation duration Ta

using a simple neural network to create time-conditioned anticipation queries
qa. These time-conditioned queries enable the model to predict actions over any
specified anticipation duration.

Training. We provide supplemental details about computation of loss function
used to train the networks in the second stage (i.e., action anticipation stage)
of our Anticipatr approach. The training involves aligning groundtruth and
predicted set of action instances followed by computing the anticipation loss
over all aligned pairs.

Greedy Set Correspondence. Given an observed video, the groundtruth
set of future action instances varies based on input whereas our anticipation
decoder predicts a set of fixed size (larger than maximum size of groundtruth
sets in the dataset). Therefore, there is no prior correspondence between the
groundtruth and predicted set. We derive this correspondence using a greedy
algorithm based on temporal overlap among instances. Intuitively, the objec-
tive is to correctly align actions at as many future time instants as possible.
We first sort the action instances groundtruth set based on the descending or-
der of the duration of the instances. We begin the alignment process with the
groundtruth instance having the maximum duration. We lookup the predicted
set to find the predicted instance that has maximum temporal overlap with this
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groundtruth instance. Since the predicted set is designed to represent a single
action instance, the alignment between groundtruth and predicted set is one-to-
one. Thus, to continue the alignment process, the matched groundtruth instance
and predicted instance are removed from the corresponding sets. In this way, this
process is repeated until the groundtruth set is empty. As the predicted set is of
size larger than groundtruth set, the remaining predicted instances are mapped
to ∅ denoting no action. In Sec. A.2, we also evaluate anticipation results of
models trained using another set correspondence algorithm, namely, Hungarian
matcher (see Table T9 and Table T10).

Loss function. We compute loss L (defined in Eq. (4) in the main paper)
over all the matched pairs as a weighted combination of cross-entropy loss for
classification and two temporal losses (L1 loss and IoU loss Liou) for prediction
of segment timestamps. Here, we provide our motivation behind temporal loss
and provide additional description.

The L1 temporal loss is sensitive to the absolute value of the duration of the
segments. The IoU loss Liou is invariant to the duration of the segments. Thus,
these two losses together are designed to incorporate different aspects of segment
prediction. For completeness, we describe Liou as follows.

Liou(s
i, ŝγ(i)) = 1− |si ∩ ŝγ(i)|

|si ∪ ŝγ(i)|
, (5)

where |.| is the duration of the instance, i.e., difference between end and start
timestamp.

A.1.2 Training Details

For training of first stage, we use dropout probability of 0.1. For the segment
encoder, we use base model dimension as 2048 and set the number of encoder
layers as 3 with 8 attention heads. We use an effective batch size of 64 for training
segment encoder on this dataset. For training in the second stage, we use base
model dimension in the video encoder and anticipation decoder as 2048 and set
the number of encoder and decoder layers as 3 with 8 heads.

We use four datasets – Breakfast, 50Salads, EPIC-Kitchens-55, EGTEA
Gaze+ – to evaluate our model on long-term action anticipation. We provide
dataset-specific hyperparameters as follows.

We train all our models using AdamW [37] optimizer on 4 Nvidia V100 32GB
GPUs. We initialize all the learnable weights using Xavier initialization.

Breakfast. We represent input videos as I3D features provided by [1]. We
choose Na (anticipation queries) to be 150. We use an effective batch size of
16 for training the video encoder and anticipation decoder on this dataset on
the long-term anticipation task. We train our models with a learning rate of
1e-4 and a weight decay of 0. The model is trained for 4000k steps. We use a
dropout probability of 0.1. We set λL1 = 3 and λiou = 5. To obtain segment-
level representation of the observed video during action anticipation, we use a
temporal window of length k = 16.
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50Salads. We represent input videos as Fisher vectors computed using [2].
We choose Na (anticipation queries) to be 80. We use an effective batch size of
16 for training the video encoder and anticipation decoder on this dataset on
the long-term anticipation task. We use a learning rate of 1e-5 and a weight
decay of 1e-5. We train the model for 3000k steps and reduce the learning rate
by factor of 10 after 1500k steps. We don’t use dropout for this dataset. We set
λL1 = 3 and λiou = 5. To obtain segment-level representation of the observed
video during action anticipation, we use a temporal window of length k = 48.

EPIC-Kitchens-55. We represent input videos as I3D features provided by
[3, 46]. We use an effective batch size of 16 for training the video encoder and
anticipation decoder in the second stage. We choose Na (anticipation queries)
to be 900. We use a learning rate of 1e-4 and a weight decay of 1e-5. We train
the model for 6000k steps and reduce the learning rate by factor of 10 after
4000k steps. We use a dropout probability of 0.1. We set λL1 = 5 and λiou =
8. To obtain segment-level representation of the observed video during action
anticipation, we use a temporal window of length k = 32.

EGTEA Gaze+. We represent input videos as I3D features provided by
[3, 46]. We use an effective batch size of 16 for training the video encoder and
anticipation decoder in the second stage. We choose Na to be 600. We use a
learning rate of 1e-5 and a weight decay of 1e-5. We train the model for 4000k
steps and reduce the learning rate by factor of 10 after 3000k steps. We use a
dropout probability of 0.1. We set λL1 = 3 and λiou = 5. To obtain segment-
level representation of the observed video during action anticipation, we use a
temporal window of length k = 24.

A.1.3 Evaluation Details
Note that our model predicts a set of action instances, wherein, each action in-
stance is of the form (label, start time, end time). To evaluate the model outputs
as per the benchmarks, we do the following postprocessing.

For Breakfast and 50Salads, following the benchmark [55], we evaluate the
action anticipation outputs over a dense timeline. Our proposed Anticipatr
predicts a set of action instances. During evaluation, we process this set of action
instances to construct a timeline corresponding to the anticipation duration.
We refer to the timeline as a sequence of action labels for time instants in the
anticipation duration, i.e., between To + 1, . . . , To + Ta. In the benchmarks, the
timeline contains a single action class corresponding to each time instant. We
iterate over the predicted set to assign class labels to this timeline. Specifically,
for each action instance in the predicted set, we assign the predicted action
class to the time instants that are within the predicted segment (determined by
predicted start and end timestamp). When predicted action instances overlap at
certain time instants, we assign the action class with highest probability score
among the overlapping predictions. Once the timeline is constructed, we compute
mean over classes accuracy [55] to evaluate the model performance. Note that
we are constructing this timeline only during evaluation to follow the benchmark
evaluation protocols.
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Table T1. Ablation: Loss function (Breakfast and 50Salads). We report the
mean over classes accuracy for different observation/anticipation durations. Higher
values indicate better performance. ✓ and ✗ indicate whether the component of the
temporal loss is used or not respectively.

Method βo → 20% 30%

βa → 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast L1: ✗; Liou:✓ 36.2 30.7 28.6 26.4 38.7 33.9 31.0 27.3
L1: ✓; Liou:✗ 36.5 31.1 29.1 28.2 39.2 34.2 31.7 28.1
L1: ✓; Liou:✓ 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4

50Salads L1: ✗; Liou:✓ 40.2 33.9 26.8 26.0 41.9 41.4 27.6 23.3
L1: ✓; Liou:✗ 40.8 34.5 27.1 26.8 42.1 41.6 27.9 23.4
L1: ✓; Liou:✓ 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6

Table T2. Ablation: Loss function (EK-55 and EGTEA+). We report mAP
values for all classes, frequent classes (> 100 action instances) and rare class (< 10
action instances). Following [46], we report the mAP values averaged over different
observation durations. Higher values implies better performance. ✓ and ✗ indicate
whether the component of the temporal loss is used or not respectively.

Method EK-55 EGTEA+

All Freq Rare All Freq Rare

L1: ✗; Liou:✓ 34.9 56.4 27.3 75.2 82.1 53.8
L1: ✓; Liou:✗ 37.7 57.8 28.4 76.0 82.7 54.6
L1: ✓; Liou:✓ 39.1 58.1 29.1 76.8 83.3 55.1

For EPIC-Kitchens-55 and EGTEA Gaze+, we perform a union over the
action classes in the predicted set of instances to obtain a set of future action
classes. We remove ∅ class from this set and use this set to compute mAP as
described in benchmark [46].

A.2 Additional Ablation Analysis

In this section, we report our findings from additional ablation experiments.
Ablation: Loss function. The training loss function defined in Eq. (4) in
the main paper contains three components (cross-entropy loss and two temporal
losses). We conduct ablation experiments by removing one of the temporal losses.
Note that we always need cross entropy loss for the classification task. Results
in Table T1 and Table T2 show that models trained with overall loss perform
better than the ones trained with the ablated versions. Moreover, the models
trained with only L1 temporal loss perform better than the ones trained with
only Liou.
Ablation: Anticipation queries. The number of anticipation queries discerns
the maximum number of action instances the model is supposed to predict.
Results in Table T3 and Table T4 shows the performance of our model with
different number of anticipation queries. The results suggest minor improvement
with higher number of anticipation queries, however, the models with more num-
ber of queries require longer training times. Intuitively, a very large number of
anticipation queries implies the model will require more time to learn the non-
maximal suppression of the irrelevant predictions. On the other hand, when the
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Table T3. Ablation: Anticipation Queries (Breakfast and 50Salads). We re-
port the mean over classes accuracy for different observation/anticipation durations.
Higher values indicate better performance.

Method βo → 20% 30%

βa → 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast Na = 50 32.6 28.2 26.4 24.3 35.8 31.4 28.7 25.3
Na = 150 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4
Na = 500 36.6 31.5 29.4 27.3 38.5 34.4 31.3 28.3

50Salads Na = 20 38.4 33.2 24.2 23.6 39.1 35.6 25.5 24.2
Na = 80 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6
Na = 320 40.5 34.2 26.0 25.6 41.3 40.9 27.4 23.3

Table T4. Ablation: Anticipation Queries (EK-55 and EGTEA+). We report
mAP values for all classes, frequent classes (> 100 action instances) and rare
class (< 10 action instances). Following [46], we report the mAP values averaged over
different observation durations. Higher values implies better performance.

Dataset All Freq Rare

EK-55 Na = 300 34.3 55.6 24.2
Na = 900 39.1 58.1 29.1
Na = 2700 38.2 56.9 28.3

EGTEA+ Na = 200 70.2 79.5 49.7
Na = 600 76.8 83.3 55.1
Na = 1800 75.3 82.4 53.3

number of anticipation queries is reduced, the anticipation performance of our
model degrades. A very small number of anticipation queries implies less number
of action are anticipated. Thus, for very complex video with many future action
instances, the model would miss several action instances resulting in poor antic-
ipation performance. Additionally, as shown in Table T3, the anticipation error
increases over time. This is because there are more actions to be anticipated and
the model is limited by the number of anticipation queries.
Ablation: Segment window length. Results in Table T5 and Table T6 shows
the performance of our model with different values of temporal window lengths
used to extract segment-level representations during action anticipation. The re-
sults suggest that neither a very small window length nor a very large window is
helpful. The segment encoder is trained to predict future actions given a video
segment depicting a single action. During the action anticipation stage, when the
segment encoder is used to extract segment-level representations, the observed
video is divided into a series of non-overlapping segment using temporal sliding
windows as the action boundaries are not known. Intuitively, when the temporal
sliding window is very small, the individual segments do not have enough infor-
mation to obtain effective representations. On the other hand, when the window
is very large, the segments contain more than one action and potentially results
in segment-level representations with overlapping semantic content. We observe
that the drop in performance with models that use smaller window lengths is
larger as compared to the ones with larger window lengths.
Ablation: Sliding Windows for Segment Encoder Training. Instead of
using action boundaries we used sliding temporal windows of length=k (same
as used during stage 2) to obtain segments for segment-level training. Results in
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Table T5. Ablation: Segment window length (Breakfast and 50Salads). We
report the mean over classes accuracy for different observation/anticipation durations.
Higher values indicate better performance.

Method βo → 20% 30%

βa → 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast k = 4 35.9 30.6 26.3 26.1 38.4 33.6 30.8 28.2
k = 16 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4
k = 64 37.4 31.7 29.9 28.1 39.1 35.0 31.7 28.7

50Salads k = 12 39.0 33.5 25.8 25.4 39.6 38.4 26.4 21.5
k = 48 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6
k = 192 41.0 34.8 27.2 26.8 42.6 42.1 27.5 22.8

Table T6. Ablation: Segment window length (EK-55 and EGTEA+). We
report mAP values for all classes, frequent classes (> 100 action instances) and
rare class (< 10 action instances). Following [46], we report the mAP values averaged
over different observation durations. Higher values implies better performance.

Dataset All Freq Rare

EK-55 k = 8 37.9 57.2 27.4
k = 32 39.1 58.1 29.1
k = 128 38.8 58.0 28.7

EGTEA+ k = 6 75.4 81.7 53.9
k = 24 76.8 83.3 55.1
k = 96 76.3 82.9 54.8

Table T7 and Table T8 show that this approach results in a slightly lower per-
formance than our proposed training approach. This is possibly due to increased
noise in the segment-level representations from this training approach.

Table T7. Ablation: Sliding windows for Segment Encoder Training. Mean
over classes accuracy for different observation/anticipation durations. Higher is better.
[BF: Breakfast; 50SL: 50Salads]

Observation (βo) → 20% 30%

Anticipation (βa) → 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast Sliding windows 35.9 30.7 28.0 26.4 37.8 33.5 29.9 25.2
Anticipatr(Full) 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4

50Salads Sliding windows 37.2 33.5 26.3 25.8 37.9 37.0 26.1 24.5
Anticipatr(Full) 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6

Ablation: Set correspondence. To compute the anticipation loss, we use a
greedy algorithm to align groundtruth and predicted set of action instances. An-
other commonly employed set correspondence algorithm is Hungarian matcher
algorithm used in prior works [9,29]. For completeness, we also conducted exper-
iments with Hungarian matcher optimized over the cost function with all three
terms (classification loss and two temporal losses) following [47]. We didn’t ob-
serve any significant difference in performance of the models trained using either
of the two matchers as shown in Table T9 and Table T10.
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Table T8. Ablation: Sliding windows for Segment Encoder Training. mAP
values for all classes, frequent classes (> 100 action instances) and rare class (< 10
action instances). Higher is better.

Method EK-55 EGTEA+

All Freq Rare All Freq Rare

Sliding Windows 37.6 56.5 27.4 74.8 81.2 53.0
No Video Encoder 30.9 51.8 21.2 70.2 79.9 50.1
Anticipatr(Full) 39.1 58.1 29.1 76.8 83.3 55.1

Table T9. Ablation: Set correspondence (Breakfast & 50Salads). We report
the mean over classes accuracy for different observation/anticipation durations. Higher
values indicate better performance.

Method βo → 20% 30%

βa → 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast Hungarian 36.8 32.0 30.5 28.4 39.2 35.4 31.9 29.6
Greedy 37.4 32.0 30.3 28.6 39.9 35.7 32.1 29.4

50Salads Hungarian 41.3 35.1 27.4 26.8 42.9 42.0 28.4 23.8
Greedy 41.1 35.0 27.6 27.3 42.8 42.3 28.5 23.6

A.3 Additional Qualitative Analysis

Visualizations in Fig. F2 and Fig. F3 show that our model is generally able to
anticipate correct actions at future time instants long anticipation durations for
Breakfast and 50Salads benchmarks respectively.

Visualizations in Fig. F4 and Fig. F5 show that our model is able to effectively
predict future action classes for EK-55 and EGTEA benchmarks respectively.
Failure Cases. We observe that the action boundaries in some cases are not
exactly aligned with the groundtruth even though the class labels are predicted
accurately (See Fig. F2 and Fig. F3). We believe this could be because the
visual information pertaining to the information is limited or negligible towards
the beginning and end of the action instance.

Most classification errors result from the model getting confused among se-
mantically similar classes. Some such cases from our examples are ‘take ladle’
and ‘pick-up ladle’ in Fig. F4(b)); ‘close sandwich’ and ‘close hamburger’ in
Fig. F4(d)); ‘put seasoning’ and ‘pour seasoning’ in Fig. F5(a)).

Moreover, our model sometimes misses rare actions during predictions such
as ‘pour oil’ in Fig F4(a) and ‘close fridge’ in Fig. F5(b).

Additionally, we also observe that having seen certain objects in the observed
video, the model predicts objects that are likely to co-occur with the seen ob-
jects. See the scenario in Fig. F3(d). The model doesn’t predict ‘cut cheese’ and
‘place cheese into bowl’ after the action ‘place cucumber into bowl’ and instead
predicts cut tomato and ‘place tomato into bowl’. While the prediction is not
correct for this specific activity, it is still a reasonable sequence of actions as
there are several other salad recipe videos in the dataset that only use cucum-
ber and tomato. In another scenario in Fig. F5(b), having seen ‘pasta’ in the
observed video, the model anticipates action classes with ‘cheese’ noun. While
‘cheese’ does not appear in this particular video, it is a reasonable prediction
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Table T10. Ablation: Set correspondence (EK-55 & EGTEA+). We report
mAP values for all classes, frequent classes (> 100 action instances) and rare
class (< 10 action instances). Following [46], we report the mAP values averaged over
different observation durations. Higher values implies better performance.

Method EK-55 EGTEA+

All Freq Rare All Freq Rare

Hungarian 39.0 58.4 28.4 76.7 83.5 55.0
Greedy 39.1 58.1 29.1 76.8 83.3 55.1

since the nouns ‘pasta’ and ‘cheese’ often appear together in activity videos in
this dataset.

A.4 Additional Discussion

In this work, we demonstrate the effectiveness of our model on minutes-long ac-
tivity videos. Handling longer videos with durations in hours or days (common in
surveillance or monitoring scenarios) would be interesting future work. Further-
more, our approach assumes that the videos have an overall context provided
by the ongoing long-term activity. We show that modeling interactions among
segments (and, in turn, segment-level representation) is an effective technique
for such activity videos as the video segments are indeed related. However, such
approaches cannot tackle videos that are just a montage of several unrelated
content like videos containing clips from different movies. Our approach focuses
on activity videos where contextual information is present and relevant for action
anticipation.
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Fig. F2. Visualizations (Breakfast). Examples from Breakfast dataset for the case
where observation duration is 20% of the video duration and anticipation duration
involves predicting actions for 50% of the remaining video.
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Fig. F3. Visualizations (50Salads). Examples from 50Salads dataset for the case
where observation duration is 20% of the video duration and anticipation duration
involves predicting actions for 50% of the remaining video.
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pour oil
take pan
put-down spoon
put-down fork
take pan
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put-down pan
put egg
lift pan

mix sauce
lift pot
put pasta
take ladle
pick-up ladle
stir pasta

mix sauce
lift pot
put spoon
put fork
put cheese

(a)

pour oil
take pan
put-down spoon
put-down fork
take pan

turn-off stove
put-down pan
put egg
lift pan

mix sauce
lift pot
put pasta
take ladle
pick-up ladle
stir pasta

mix sauce
lift pot
put spoon
put fork
put cheese

(b)

serve jambalaya
serve food
take fork
pick-up fork
put-down fork
move pot

put sausage
put cheese
put tomato
close sandwich
close hamburger
put-down tongs

(c)
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put-down fork
move pot
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close hamburger
put-down tongs
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Fig. F4. Visualizations (EK-55). Examples from Epic-Kitchens-55 dataset for the
case where observation duration is 50% of the video duration. We show the predicted
action classes in the visualization – classes in green color are correct predictions, classes
in red color are wrong predictions, and classes in gray color are missed classes.
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mix pasta
put condiment
take condiment-container
put seasoning
pour seasoning
take bowl
move-around pot
put pasta
pour pasta

take bell-pepper
mix bell-pepper
take oil-container
put pot
cut tomato
put cheese
mix cheese
mix seasoning

(a)

put cheese
close fridge
put patty
put lettuce
take lettuce

take condiment-container
take cheese
put tomato
squeeze sandwich
move-around patty

(b)

Fig. F5. Visualizations (EGTEA+). Examples from EGTEA Gaze+ dataset for
the case where 50% of the video is observed. We show the predicted action classes in
the visualization – classes in green color are correct predictions, classes in red color are
wrong predictions, and classes in gray color are missed classes.
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